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We introduce an iterative grid redistribution method based on the variational ap-
proach. The iterative procedure enables us to gain more precise control of the grid
distribution near the regions of large solution variations. The method is particu-
larly effective for solving partial differential equations with singular solutions (e.g.,
blowup solutions). Our method requires little prior information of the singular so-
lutions and can handle multiple singularities. The method is successfully applied to
the nonlinear Scludinger equation and the Keller—Segal equations where solutions
with multiple blowup points can be solved up to times very close to the blowup
time. (© 2000 Academic Press

1. INTRODUCTION

Numerical solution of many problems from areas such as fluid dynamics, combustion,
heattransfer requires small node separations over a portion of the physical domain to re:
large solution variations. Using uniform meshes for these problems is formidable when
system involves two or more spatial dimensions. Itis now widely recognized that an adap
computation mesh increases the accuracy and decreases the cost of numerical calcul
Adaptivity is achieved in various ways by using, for example, local adaptive meshrefinen
[2], moving finite elements mesh refinement [8, 13], adaptive node movement (see,
[3, 9, and references therein]), or methods based on attraction and repulsion pseudof
between nodes [14].

In this paper, we are mainly interested in adaptive mesh redistribution methods. W
such an adaptive method is used, the mesh point locations change while the solutic
the physical problem is computed. Both the grid point locations and the original physi
unknowns evolve as part of the problem solution. The grid point movement is usus
achieved in two different ways, static and dynamic. In a static method, mesh points
redistributed at fixed time levels according to a mesh generating rule. In adynamic or mo
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mesh method, the mesh points move continuously in the space—time domain accordi
a moving mesh equation. In both cases, the grid points are moved during the calcul
in order to improve the quality of the result. This is usually assumed to mean that sc
measure of the total error in the solution has been reduced or physical resolution has
improved in regions where large changes in dependent variables occur.

The key ingredient of such adaptive methods is the grid generation rule. In grid genera
one seeks a change of independent variables (or a mapping from the physical dome
the computational domain), such that, in the new variables, the variation of the concel
quantity (defined by the monitor function) is reduced. In the discrete level, this means
a uniform grid in the computational domain is mapped into the physical domain so t
more grid points are concentrated in the regions of large variations. The question tha
are concerned with in this paper is whether it is possible (and how) to determine an opt
coordinate mapping in certain sense, so that we can achieve the best possible behay
the computation variables. As we will see later, this question is particularly important if |
problem that we are dealing with is singular.

In two (or higher) spatial dimensions, the commonly used mesh generation technic
are based on a variational approach, many of which are derivations of a technique
proposed by Winslow. The functional is chosen so that the minimum is suitably influen
by the solution of the partial differential equation (PDE). Specifically, given a solution
of the PDE at a fixed time, a mapping from the physical donsgirio the computational
domaing, which usually is taken to be the sames

£(X) © Qp — 2, (1.1)

is determined by minimizing a functional of the form

"1
E@) = / = |Vg[2dx, (1.2)
Q w

wherew(x) is a weight function (or monitor function) depending on the physical solutic
u(x) to be adapted. The monitor function should be chosen so that the function in
computational domain given by

v(§) = u(x(é)) 1.3)

is better behaved. With (1.2), the coordinate transform (1.1) is determined from the Eu
Lagrange equation

1
V. (—Vé) =0. (1.4)
w
In one dimension, (1.4) is simplified to
Xew = C, (15)

which is the differential form of the equidistribution rule used in many one-dimensior
adaptive methods [9].

Understanding how the monitor function influences the resulting mesh propertie:
crucial for the success of a mesh adaption method. In one dimension, such a relati
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given by the equidistribution rule, but only in an average sense. In multiple dimensions,
even more difficult to predict the overall resulting mesh behavior from the monitor functi
itself. In other words, it is difficult to have a precise control of the resulting grid distributic
from (1.4) or (1.5). Our numerical experiments using the above methods in various fol
have shown that adaptivity is achieved only when the solution is moderate. However, |
points stop moving toward (or even turn away from) the singular region when singulal
is approached; i.e., adaptivity is lost when it is most needed. Part of the reason is bec
the solution is so concentrated in a small region that it has little effect on the grids
away from the singularity. An explicit reason for the failure is given in Section 3 for tf
one-dimensional problem. In a particular application, such a problem may be fixed parti
by choosing a carefully designed monitor function when the structure of the singularity
available. But a method that works in general is desirable. Such a method must be bas
a better grid redistribution procedure than those given above.

In Section 4, we introduce an iterative grid redistribution method. The fundamental ic
is that one realizes that a successive application of the mapping (the Winslow mapp
obtained from (1.1)—(1.4) (or the generalization of them) improves the adaptivity of t
grids. In fact, our results indicate that the iteration converges to an optimal coordin
mapping in the sense that the monitor function converges to a constant function alr
everywhere. With the iteration procedure, we gain control of the mesh distribution near
singular point; i.e., we may achieve desirable grid adaption by controlling the numbel
mesh iterations. In Section 5, we show how our iterative grid redistribution procedure
be easily implemented in a static adaptive grid redistribution procedure for PDEs.

In Section 6, we show several numerical examples. We mainly apply our methoc
the nonlinear Scludinger equation [11, 12]. The dynamic rescaling method has beet
very successful method for solving the blowup solutions of the nonlinearo8ictyer
equation (NLS). Not only it can integrate the equation very close to blowup time, t
method also provides the blowup profile as well as the rate of blowup. However, the met
is restricted to the case in which the solution blows up at only a single point and it a
cannot resolve the solution outside the self-similarity region. In our numerical examp!
we will demonstrate the capability of our method for tracking multiple singularities. Fir:
we solve the nonlinear Satdinger equation with a single blowup point and the results al
shown to match the results obtained by the dynamic rescaling method. More importal
in the second example we solve a solution that blows up at two points. To the best of
knowledge, such calculations have never been done before, at least not with such
resolutions. We also show a calculation in a supercritical case where the boundary o
region of self-similarity can be determined by our method. This shows that not only «
method can resolve the singular regions, it also takes care of the the regions away
the singularities. Finally, we will show a numerical solution for the Keller—Segal mod
for bacterial pattern formation where multiple singularities arise from an initial unifor
bacterial density distribution.

Note that various improvements of Winslow’s method have been considered by m
authors [1, 3, 4, 10, 14, 17]. For example, Brackbill [4] incorporates an efficient directiol
control as well as orthogonality of the mesh into the mesh adaption by adding to (1.2) ir
functionals measuring those effects and thereby improves both accuracy and efficien
certain physical problems. Further improvement can also be obtained by introducing a “
inertia” term into the formulation (see [17]). It is expected that our iterative procedure ¢
also be applied in a similar way to problems where directional control and orthogonality
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the mesh are important. We also note that, in this paper, we do not consider the effect of
smoothing which is important in many applications, especially when solution (singul
structure is complex.

2. VARIOUS GRID GENERATION RULES

2.1. Grid Distribution Based on the Equidistribution Principle in One Dimension

The equidistribution principle was introduced by de Boor [7] for solving boundary val
problems for ordinary differential equations. Itinvolves selecting mesh points such that s
measure of the solution error is equalized over each subinterval. Based on this princ
many moving mesh methods have been developed.

Let x and¢ denote the physical and computational coordinates, respectively, on the |
interval [0, 1]. A one-to-one coordinate transformation between these domains is den

by

{x=x(§>, £el0,1] 2.1)

x(0) =0, x(1) =1.

Suppose that a uniform mesh is given on the computational domain by

where n is a certain positive integer, and denote the corresponding mesh by
{Xo, X1, ..., Xn}. For a chosen monitor functiow(x) (>0), which provides some mea-
sure of the computational error in the solutio(x) of the underlying physical PDE, the
(one-dimensional) equidistribution principle can be expressed in its integral form as

/Xw(s)ds=§C, (2.2)
0

where

1
C=/ w(s)ds 2.3)
0

or equivalently, in the discrete form,
X1 X
/ w(x)dx:/ w(X) dx for i=12,...,n—1
Xi Xi-1
Differentiating (2.2) once, we obtain a differential form,
a
w(X(&))gX(&) =C. (2.4)

Whenw(x) = /1 + uZ, the above method is known as the “arclength method.”
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2.2. Grid Distribution Based on the Variational Principle

The above equidistribution principles cannot be generalized directly to two or higl
dimensions. In fact, equidistribution can be achieved locally in only a certain way [!
In two (or higher) spatial dimensions, mesh adaption is commonly done using the va
tional approach, specifically by minimizing a functional of the coordinate mapping betwe
the physical domain and the computational domain. The functional is chosen so that
minimum is suitably influenced by the desired properties of the solution of the PDE its

Again, letx and¢ denote the physical and computational coordinates, respectively, o
domainQ € RY. A one-to-one coordinate transformation @ris denoted by

X = X(§), Eeq. (2.5)

The functionals used in existing variational approaches for mesh generation and adapt
can usually be expressed in the form

ﬂ
E@®) = /Zg"as & ix. (2.6)

i i
s axi axi

whereG=(g; ), G 1= (g"1) are symmetric positive definite matrices that are monitc
functions in a matrix form. The coordinate transformation and the mesh are determi
from the Euler—Lagrange equation,

V. (G lve) =0 (2.7)

Equations (2.6) and (2.7) are related to the theory of the harmonic map, where the Hamil
Schoen-Yau theorem guarantees the existence and uniqueness of the mapping with n
nishing Jacobian.

We note that more terms can be added to the functional (2.6) to control other propel
of the mesh, such as orthogonality of the mesh and the alignment of the mesh lines w
prescribed vector field [4].

2.3. Winslow’s Variable Diffusion Equation

A special case of (2.6) is Winslow’s variable diffusion method. Winslow [16] suggest
a functional of the form

1 )
E®) = Z|vel2dx, 2.8
) /szjw|m X (2.8)

wherew > 0 is a weight function depending on the physical solution to be adapted, and-
corresponds to (2.6) with the monitor function,

G=wl.

The Euler-Lagrange equations whose solution minimzese

V. ivgi =0, (2.9)
w

which are diffusion equations.
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The diffusion coefficienD = % can be directly related to the cell area or volume [1]. W
denote the Jacobian of the mapping as defined as

J* = é';‘xrly - gyﬁx

for the two-dimensional case. L& =In D, J=—InJ* A straightforward calculation
gives

V2(J-D)-VJ-V(J-D)=-RJ™,

=27 (&) 7 (5) (&) 7))

If we assume the term on the right sideJ*~1, to be small, then we have

where

V2J-D)-VJ-V(J-D)=

and a solution may readily be written as

V(J-D)=0
or
(J — D) = constant (2.10)
and
DJ*=C,

whereC is a constant. This shows thBtis proportional to thel*~1. Therefore, equidistri-
bution is approximately satisfied in the regions whré ! is small.

2.4. Solving the Generator Equation by Heat Flow

In our applications, the solutions of the elliptic system (2.9) are obtained as a steady :
of the heat flow equations [10],

{ﬁ—v-(;va:

n_y.(lyy) =o.

(2.11)

That is, we solve the evolution Eg. (2.11) for long time until the solution becomes alm
steady. This steady state is used as the solution to (2.9). Note ith2.11) should not

be confused with the time variableised in the underline nonlinear PDE (5.1). For actue
computation, the dependent and independent variables in (2.11) are interchanged ar

have
Xg d Tl d Tl
Xt = — X —X — — | X —X
‘ {85('7\111)77 anp \"f Jw’"

X {%(XT%X ) +— 0 ( Tlexg)} (2.12)

An
J



252 REN AND WANG

where the Jacobiah= x; y, — X, Yt . The steady-state solution of (2.12) serves as the desir
solution of (2.9). We can start from a uniform mesh, &, n, 0) =&, y(&,n,0)=n, or
from an appropriate initial guess provided in the problem.

It is obvious that, to improve efficiency, more sophisticated elliptic solvers, such as
multigrid method, can be used to solve the elliptic system. In our method, grid redistribut
were needed only once in a while. Computational cost for this part is not an issue (at |
in two dimensions).

3. PROPERTIES OF THE RESULTING GRID DISTRIBUTION
IN THE EXTREME CASE

From equidistribution property in one dimension and the properties of the solution of
Winslow equations, we expect more grid points will be concentrated at the regions of re
variation of the solution. However, we will show that when the solution becomes singul
such grid adaptivity is actually lost with the above methods.

3.1. Numerical Tests

We first consider a one-dimensional example. Let

u(x) = %e—( x-05)

and the monitor function be = /1 + u. We show the grid distribution for variousin

Fig. 1. It is clear from the graph that as one decreaséise grid points move toward the

center first, but most of the points then move away from the centar@sinues to decrease.
A two-dimensional example for function

u(x, y) = ce &)

1 T T T T T T
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o+ + + o+ + A E A+ o+ o+ +
1 1 1 I L 1 1 1 ( |
0 0.1 02 0.3 0.4 0.5 0.6 07 0.8 0.9 1
1 T T T T T T T T T
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oF + o+ o+ o+ o+ 4 HHEE v+ + + + o+
1 1 1 1 i L 1 1
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1 T T T
e=1/60
o + o+ o+ o+t Ak o+ A
1 1 1 1 1 1 1 1 1 1
] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
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FIG. 1. Grid behavior ag decreases.
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FIG. 2. Grid behavior foru =ce*"*"+¥ in 2-d asc increases.

shows similar grid behavior. Figure 2 shows the grid distributions obtained from (2.9)

two different monitor functions

(b) w(x,y) =+/1+|Vul2.

1+ ul?,

@ wx,y) =

In both cases, we see that, just like in one dimension, grid adaption is achieved for sm

c and then lost whenis large.

Other examples with various choices of monitor functions exhibit similar phenome

Such behavior seems to be generic when the monitor function becomes singular.
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3.2. Asymptotic Analysis

To understand the above phenomena, let's assume that we have a monitor functior
is close to a self-similar singularity characterized by a parameter

we () = /14 ;ﬁg(g)

whereg(y) is positive, has maximum at= 0, and decays rapidly (say, faster th@n‘or a
large enougim) asy — co. We want to study the behavior of the gridsas> 0. From (2.4),
we have

Xe = C(e) _ C(e) ’ (3.1)
o)

C(s):/ol\/le;;(g(:)dx

Integration by parts, we have

Cle) =xy/1+ kg

1
+8kg

where

Skg<x>
/0 2\/1+ lg(%
ygdy

2\/e" + g(y

Sinceg(y) decays rapidly ag — oo, we have, ag — 0,
Cle) ~ 1+ Al 2, (3.2)

where

* yg(y) /°°
/O 2/9) y A Vv a(y)dy.

We thus have fok # 0 (i.e., away from the singularity) arsd— 0

X — 1 when k<2
Xz —> 1+ A when k=2 (3.3)

Xg — 00 when k> 2

Thisimpliesthat, in the case< 2, we haveA X = A& away from the singularity. Therefore,
ase — 0, only grid points very close to O are allowed to move; i.e., the grid adaption is ve
limited near the place that functianis large. This also shows that one has to know th
solution behavior in some detail in order to design the monitor function which can genel
the desired grid distribution near the singularity.
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4. AN ITERATIVE REMESHING PROCEDURE

To improve the mesh adaption, we introduce an iterative remeshing procedure. Le
first define the Winslow mapping:

T: (X ux) = (&, v()).

Herex =x(&) is determined from (2.9), where the monitor functiox) depends oni(x);
v(§) = Uu(X()).

If the monitor functionw is chosen properly, the resulting mesh should concentrate m
grid points in the regions with large variations. This also meansutfggtshould be better
behaved than the original functioiix) in the sense that the variation of the monitor functior
in the new variables is reduced. However, the examples in the previous section show
in some cases, such improvement is very limited. A natural idea to improve further is
repeat the same procedure f@€). In fact, this process can be repeated until a satisfacto
v(&) is achieved. Based on this intuition, an iterative remeshing procedure is introduce
applying the Winslow mapping iteratively:

e LetuX(x) be the function aftek iterations.

e Determine the mapping1(¢) from uk(x) according to (1.4) or (1.5), where monitor
functionwX is defined usingi*(x).

e Defineukt1(g) := uk(xkt1(¢)).
The results of the iteration is to flatten out the monitor function gradually. In fagf (i)
andx¥(£) converge, then we must haxt— x*(£) = £ anduX — u*(x).

Claim. wK converges to a constant function almost everywhere.

This shows that we achieve the maximum adaption for the monitor function. The ab
claim is verified by many of our numerical examples below, although so far, rigorous pr
can only be obtained in some special cases.

ExAMPLE 1. Letu(x) = exp(—20(x — 0.5)?) on [0, 1]. We apply the above iteration
using three different monitor functions:

@ w=4/14+u2, (b) w=+v1+4+u2 () w=,/1+0.102+ U

In Fig. 3, we showu (x) for differentk. Figure 3a shows that (x) converges to two straight
lines, i.e.,|u§(x)| converges to constants a.e. Figure 3b shows|tf&k)| converges to 1.
Figure 3c shows that a combination of (a) and (b) gives a limiting function with much bet
behavior. In all cases, we haue— Constant a.e. ds— oo.

EXAMPLE 2. Letu(x, y) =e=5*+¥) We use three different monitor functions:

@ w=+v1+|Vu2, (b) w=+v1+U2 (C) w=+/1+|VUZ+u2

Again, in case (a), we see thatconverges to a cone so th&tu|? converges to a constant.
In case (b)|u¥| converges to 1. In case (c), the limiting function has much better behavi
In all cases, we again hawe — Constant a.e. ds— oco. Only pictures for case (a) are
shown in Fig. 4.
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FIG. 3. Iterative remeshing for three different monitor functions. Circles repragentin physical variable.
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FIG. 4. lterative remeshing in two dimensions with monitor functioe= /1 + |Vul2.

The above examples also suggest that to achieve better limiting behavior in the cor
tational domain, the monitor function should include bpthand|Vu|. Theoretically, the
more higher order derivatives are added (although difficult to implement in practice),
better limiting behavior of the function in the computational domain is expected. To ¢

this, let the monitor function be = \/1 + |u| + |Du| + | D2u|. Since in the iteration limit,
the monitor functiorw tends to a constant, which is the integral average,afe have that,
in the computational variables, mgRu|, max| D?u| are all bounded by the same constant

ExampPLE 3. Next, we show the capability of improving the mesh adaption by tf
iterative remeshing in Fig. 5. Again for functiorix, y) = ce ¥ with ¢ =50, we see

¢=50 mesh after 1 iteration

c=50 mesh after 2 iterations
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FIG.5. Improved mesh distribution (compare to Fig. 2) toe ce*"z“z*yz’(c: 50) after several iterations.
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Iterative remeshing fan

FIG. 6.
tom). In both cases,

significant improvement (compared to Fig. 2) in mesh concentration at the origin as

number of iterations increases.

ExampLE 4. Figure 6 shows the effect of the iterative remeshing for functien

respectively. The maximum

+0.5)?),

points of the above two functions are on the curves. This example shows the capabilit

exp(—8(4x2 4 9y? — 1)) andu = exp(—100(y — x2
our method for handling possible line singularities.

5. ADAPTIVE PROCEDURE FOR SOLVING PDE s

In this section, we design a numerical scheme that incorporates the iterative remes
into a static adaptive method for solutions of PDEs. For simplicity, we will only formula
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the scheme in two dimensions. Generalization to three dimensions is straightforward.
scheme is static; i.e., we use a fixed grid to solve the PDE in the computational varia
until a certain criterion is violated that indicates that the adaption is needed. Then itere
remeshing is used to generate a new grid.

Let's assume that we solve a PDE or system of PDEs of the form

Uy = F(x, u, Du, D?u), x € Qp, (5.1)

supplemented with initial and boundary conditiobss the first-order differential operator.
The one level grid generation is based on (2.9),

V- (ive) =0
(5.2)
V- (uVn) =0,
which determines the transformati@gaé, n), y(&, n)) from the computational domaif,
to the physical domaite,. The choice of the monitor functiom is problem dependent. In
most casesy = /1 + «|Vi|2 + B|0|? is good enough for certain constants- 0, 8 > 0.
The procedure is described in the following:

(0) Given an initial conditioni(x, y, 0), the initial grid transformx (&, n), y(&, n) are
determined from the iterative remeshing, which in turn gives an initial condition in t
computational domaid(x(&, n), y(&, n), 0).

(1) Solve the PDE in the computational variables; with the grid transformation
x(&, 1), y(&, n) being fixed, until some timg when the solutioni(, n, t*) cannot meet a
certain criterion.

(2) Generate anew mesh bythe iterative remeshing, startingiggithy, t*). The remesh-
ing iteration stops if the criterion in (1) is satisfied. The interpolation is used to move f
solution on the new grids.

(3) Goto (1) to continue the integration.

Remark 1. The stopping criterion in step (1) depends on the specific problem. In ¢
numerical examples below, the criterion is set so that the maximum amplitude of the grac
is smaller than a given value TOL. The choice of TOL is flexible. However, it has to |
larger than the integral average of the gradient of the solution over the domain. It is €
to see that a smaller TOL requires more remeshing iterations. In actual applications,
should include quantities of interests near the singularity in both the monitor function
the stopping criterion. For example, in the fluid problem, vorticity might be the desir
quantity to be included in the monitor function.

Remark 2. In most of the cases, only one remeshing iteration is needed when we s
the iteration withii(g, n, t*) in Step 2. Since we always start the iteration from the mo:
recent solution in the computational domain, when the cycle (1)—(3) is repkaieds,
effectively we have at least remeshing iterations at from the solution in the original
physical variables.

Remark 3. Our grid movement method is static; i.e., the grids are held stationary duri
the evolution of PDEs until the stopping criterion is violated and are shifted to their new |
sitions by our iterative procedure. The solution values are moved from the old grid to the |
grid by interpolation. The interpolation is carried out on the uniform mesh and using cu
polynomial interpolations. As pointed out in Remark 2, our iterative procedure was cari
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out gradually as the solution evolves toward the singularity and solution behavior in the c
putational domain is always controlled by the stopping criterion (e.g.,|Mak < TOL).
Therefore interpolation errors are also controlled.

6. NUMERICAL EXAMPLES

We first solve the nonlinear Saddinger equation (NLS),

iy + AV + W2y =0, (X, y) € Qp,t >0,
VX, Y, Dlpg, =0,

in two dimensions. The singular solutions with one blowup point were successfully co
puted using the dynamic rescaling method first developed in [12] for the radially symme
case and generalized in two and three dimensions in [11]. We shall first reproduce the ri
for the single blowup point. Then we will present an example with multiple blowup poin
as well as an example in the supercritical case.

Let (x(&, n), y(&, n)) be the spatial coordinate transformations. B@th(the physical
domain) and; (the computational domain) are chosen to b&,[1] x [—1, 1]. As in the
dynamic rescaling, we also rescale the time fitotmz as

(6.1)

Z—: = AZl(t)' (6.2)
Let
V= id’
L™
whereL (t) is a scaling factor chosen to be
L(t) = 1 (6.3)

maXx,yyee, ¥ (X, Y, O]

To balance the coefficients in the transformed equation, we chioede’ . In the coordinate
system(&, n, t), the NLS becomes

L, ,
o= T O (A2Ag¢ + |4|°¢) =0, (6.4)

together with
L, = LZ ™ Im(¢* Agd)| gm0 (6.5)

where(&p(t), no(t)) is the maximum point ofg (¢, n, t)|, and

_ 1[0 (Doope —buogy\ 9 (buagy — biage
AB¢_J{85< ] >+an( 3 )}

by = X52+Yg:2’ b12 = XeX; + Ve Vi, b22:x$+y5'

J is the Jacobian of the coordinate transformation.

In the grid redistribution, the monitor function is taken to¢, ) = (1+2|¢ (&, n)|?+
Vo (£, n)|?) . The criterion is set so that the maximum amplitude of the gradient is smal
than a given value of TOL. Two values of TOL, 5 and 7, are used for our computations
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FIG.7. ¢(&,n, t)in Q. (computational domain) at=95.82(t =0.024317104, 1/, =2.9514 + 05 (NLS
with initial value (i)).

1. In the first example, we solve the NLS in the critical case=(1) with the initial
condition

i. (X, y,0) = 10e~4"-9%,
Equations (6.4) and (6.5) are solved simultaneouslygrwith 100x 100 grid points
and TOL=5. About 20 remeshing steps are conducted before the computation rea
7 =95.82 (ort =0.024317104) when the maximum value of the solution @24 x 10°.
Figures 7 and 8 show solutions in the computational and the physical variables, respecti
att =95.82. The mesh distribution is shown in Figs. 9 and 10, where one can see that
minimum mesh size is about 18 A cross section of the solution in both the computationz

I (. y)l

FIG. 8. ¥ (x,y,1) in Q, (physical domain) at =0.024317104 corresponding to Fig. 7 (NLS with initial
value (i)).
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FIG. 9. MeshinQ, att =0.024317104t = 95.82) corresponding to Fig. 8 (NLS with initial value (i)).

and the physical variables are shown in Figs. 11 and 12. The computation is well reso
with more than 40 grid points within the interval of size 20

To verify the stable property of the isotropic singularity, a result first shown numerica
by the dynamic rescaling method [11], we define two scaling factors iahely directions:

. Jo,|¥x1?dx dy
P\ o, lvPdxdy
. Jo, ¥yl dxdy
P\ Jo,lwiPdxdy
x10°
aF
2
TR [
>0 H:HH_ E=SEEs,
y 1]
-2
-3k 4 ) h
-3 -2 -1 0 1 2 3

FIG. 10. An enlarged picture of the above mesh around the center (NLS with initial value (i)).
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1.2F

95.82)|

o (&,n=0,7
°
>
T
.

0.2

0.2 0.4 0.6 0.8 1

o

FIG. 11. A cross section of Fig. 7 at= 0 (NLS with initial value (i)).

Figure 13 shows the ratio ofj as a function ofr and the limit converges to 1 which
shows that the solution converges to an isotropic singularity. Figure 14 §1§m)ws %) as
a function ofr, which approaches 0 slowly, which leads to the blowup rate.

All the results above are consistent with the results obtained from the dynamic resce
method. To check the convergence, we run our code withx1000 and 160« 160 grid
points, respectively, and the results are compared in Fig. 15. The solution profiles at
excellent agreement. To show that our numerical results are insensitive to the remes
criterion (i.e., the value of TOL), we also run the code with TOL. The result is also in
good agreement with the result obtained with TOB (Fig. 16). Our computations were
performed on a single node SGI 02000 machine. The total CPU time for this run is 559

|\|1(><,y=0)Vrgax(x,y,E Qpl\v!o
=3 @

T
.

o
=
T

0 L ) L I L L 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

x x10°

FIG. 12. A cross section of Fig. 8 at=0 (NLS with initial value (i)).
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FIG. 13. Ratio t—; as a function ot (NLS with initial value (i)).
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in which 1650 s are used in the remeshing (Step 2). If one uses a uniform grid wit
resolution of grid size 1€ and an explicit scheme in time, to reach the same maximu

value, the estimated CPU time would b2865x 10* h!
2. In the second example, we use the initial condition

i. y(x,y,0) = 20(6—20((X+0A5)2+y2) + e—20((><—0‘5)2+y2)),
with two maximum points. Again, we take= 1. Our results show that the solution blows
up at two points. Such a calculation cannot be done by the dynamic rescaling methoc
cause one can rescale only around one point. We have not seen other successful calcul
on such problems. We solve the equation with ¥6060 grid points in the computational
domain and TOl=7. Figures 17 and 18 show solutions in computational and physic
variables, respectively, at=76.40 ( =0.005651) when the maximum of the solution
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-0.35

0

FIG.14. a(r)= % as a function ot (NLS with initial value (i)).
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FIG. 15. A cross section ofy(x, y, t)| aty =0, T =95.82.100x 100(160x 160) grid points are used far
(—), and the maximum value at this time i9814e + 05(2.7568 + 05). TOL =5 (NLS with initial value (i)).

reaches 488x 10°. The grid distribution at the same time is shown in Figs. 19 and 20. T
blowup structure of each singularity is the same as that of the solution with single blov
point.

3. In the third example, we solve the NLS in the supercritical case 2) with initial
condition

iii. (X, y, 0)=10e"9%"~9%*,
The dynamics is much faster in the rescaled time varialit@n in the critical case. We plot
the solution at = 34.3 in both computational variables and physical variables in Figs. ?
and 22. A distinct property of the supercritical collapse is that there seems to be a fi

[w]
;

|\4/|/ma>((x'y2§Q
>

o
IS

0.2

FIG. 16. A cross section ofy (X, y,t)| aty=0, t =95.82. TOL=7(TOL =5) is used for (—), and the
maximum value at this time is.227% + 05(2.7568 + 05). 160x 160 (NLS with initial value (i)).
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FIG.17. ¢(&,7n,1)in Q. att =76.40(t =0.005653, 1/A = 1.488C + 05 (NLS with initial value (ii)).

region of self-similarity which is time independent. In a paper of Sheewl. [15], this
behavior was shown by an asymptotic analysis and supported by numerical experim
based on an improved dynamic rescaling method in the radially symmetric case. Here
show that our method also captures the phenomenon. In Fig. 23 we show a cross sect
the solution in the computational variable and an enlarged picture (Fig. 24) clearly sh
the transition from the algebraic decay of the self-similar profile to the exponential de
of the tail. In Fig. 25, we showy| - |x|al against logfx|) at several time steps near the
blowup time. It shows a transition region (or boundary of self-similarity) neditkog= —6

or |x| = 0.025 which seems to be independent of time.

10

FIG.18. v (x,y,1)in Q, att =0.005651 corresponding to Fig. 17 (NLS with initial value (ii)).
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FIG.19. Mesh ing, att =0.005651(r = 76.40) corresponding to Fig. 18 (NLS with initial value (ii)).

4. Our next example is the Keller-Segal (KS) model for bacterial pattern formation:

pr=€Ap—V-(pVC),  (X,y)€Qp, >0,

6.6
C = AC+)O ( )

Herep is the bacterial density aras the attractant field. In some cases, the concentratic
of the attractant draws the bacteria together and they achieve an infinite density at sc
finite time [5, 6].

x10

-

-2

s

FIG. 20. Enlarged view of the above mesh &, around one blowup point dt=0.005651(r = 76.40)
corresponding to Fig. 18 (NLS with initial value (ii)).



FIG. 21. Solution inQ2, atr =34.3 (NLS witho =2 and initial value (iii)).

FIG. 22. Solution in€, att = 34.3 (NLS witho =2 and initial value (iii)).

06

0.4

0.2

0 L L
-1 -0.8 -0.6 -0.4 -02 0 0.2 0.4 06 0.8 1

FIG. 23. A cross section of Fig. 21 at=0 (NLS witho =2 and initial value (iii)).
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FIG. 24. An enlarged view of Fig. 23 near the boundary.
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FIG. 25. |v| - 4/[X] are plotted against log(]) for several time steps closed to blowup time.

1 4

FIG.26. pin §, att =2.7775 (KS).



FIG. 27. cin Qatt=2.7775 (KS).

x10

FIG.28. pinQ,att=27775 corresponding to Fig. 26 (KS).
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FIG.29. cin ,att=2.7775 corresponding to Fig. 27 (KS).
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FIG. 30. MeshinQ, att =2.7775 corresponding to Figs. 28 and 29 (KS).

We start with a uniform density distribution and a perturbation in the attractant field
a periodic domain [01] x [0, 1]:

,Y,00 =1,
{p(x y.0) 67

c(x, Yy, 0) = sin2rxsin 2ry.

Thee is taken to be 0.01. On the computational domain, the PDEs have the form of

=¢eAgp — pAgC— V'p-V'cC,
{pt B8O — pAg P ©5)

Ct= AgC+ p,

0.253 !

0.252

0.251 3

> 0.25F

0.249

0.248

0.247E

0.248 0.248 0.25 0.251 0.252 0.2563
X

FIG. 31. Mesh inQ, around one blowup point &t=2.7775 corresponding to Figs. 28 and 29 (KS).
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x10

max, eq PXYD

FIG. 32. MaXyyeq, o(X, Y, ) versugt (KS).

, 1 < Yy —ys> (%)
Vi = 3 s |-
Xy X a
Equation (6.8) is solved on a uniform meshgSy with 100x 100 grid points. The TOL
is chosen to be 10. The monitor functiondsé, n) = (1 + 2|p(&, n)|% + |Vp(E, n)|?).
The computation is continued until=2.7775 when the maximum density reaches abot
10°. About 10 remeshing iterations are conducted prior to that time. The denaity the
attractantc are shown in the computation domain in Figs. 26 and 27 and in the physi
domain in Figs. 28 and 29. Mesh distributions at the samare shown in Figs. 30 and 31.

The maximum of the density as a functiontas shown in Fig. 32. Again we see a multiple
blowup solution captured by our adaptive method.

where

7. CONCLUSIONS

We have introduced an iterative grid redistribution method for computing singulariti
in multiple dimensions. The major improvement of our method over the conventional g
redistribution method is that we gain control of the mesh distribution around the singulat
which the usual mesh generation procedure based on equidistribution or variational appr
is unable to achieve. Our method is also rather general: it is capable of handling mult
singularities and requires little information in advance about the locations and struc
of the singularities. Moreover, it is relatively easy to implement compared to many g
refinement methods. Although our examples in this paper are in two dimensions, i
straightforward to generalize the method to the three dimensions. Many three-dimensi
problems exhibit richer behavior in singularities such as line singularities and transiti
from line singularities to point singularities. Our method would be more desirable in st
cases. Research on the three-dimensional problems is currently being conducted.
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