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We introduce an iterative grid redistribution method based on the variational ap-
proach. The iterative procedure enables us to gain more precise control of the grid
distribution near the regions of large solution variations. The method is particu-
larly effective for solving partial differential equations with singular solutions (e.g.,
blowup solutions). Our method requires little prior information of the singular so-
lutions and can handle multiple singularities. The method is successfully applied to
the nonlinear Schr¨odinger equation and the Keller–Segal equations where solutions
with multiple blowup points can be solved up to times very close to the blowup
time. c© 2000 Academic Press

1. INTRODUCTION

Numerical solution of many problems from areas such as fluid dynamics, combustion, and
heat transfer requires small node separations over a portion of the physical domain to resolve
large solution variations. Using uniform meshes for these problems is formidable when the
system involves two or more spatial dimensions. It is now widely recognized that an adaptive
computation mesh increases the accuracy and decreases the cost of numerical calculations.
Adaptivity is achieved in various ways by using, for example, local adaptive mesh refinement
[2], moving finite elements mesh refinement [8, 13], adaptive node movement (see, e.g.,
[3, 9, and references therein]), or methods based on attraction and repulsion pseudoforces
between nodes [14].

In this paper, we are mainly interested in adaptive mesh redistribution methods. When
such an adaptive method is used, the mesh point locations change while the solution of
the physical problem is computed. Both the grid point locations and the original physical
unknowns evolve as part of the problem solution. The grid point movement is usually
achieved in two different ways, static and dynamic. In a static method, mesh points are
redistributed at fixed time levels according to a mesh generating rule. In a dynamic or moving

246

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



ITERATIVE GRID REDISTRIBUTION 247

mesh method, the mesh points move continuously in the space–time domain according to
a moving mesh equation. In both cases, the grid points are moved during the calculation
in order to improve the quality of the result. This is usually assumed to mean that some
measure of the total error in the solution has been reduced or physical resolution has been
improved in regions where large changes in dependent variables occur.

The key ingredient of such adaptive methods is the grid generation rule. In grid generation,
one seeks a change of independent variables (or a mapping from the physical domain to
the computational domain), such that, in the new variables, the variation of the concerned
quantity (defined by the monitor function) is reduced. In the discrete level, this means that
a uniform grid in the computational domain is mapped into the physical domain so that
more grid points are concentrated in the regions of large variations. The question that we
are concerned with in this paper is whether it is possible (and how) to determine an optimal
coordinate mapping in certain sense, so that we can achieve the best possible behavior in
the computation variables. As we will see later, this question is particularly important if the
problem that we are dealing with is singular.

In two (or higher) spatial dimensions, the commonly used mesh generation techniques
are based on a variational approach, many of which are derivations of a technique first
proposed by Winslow. The functional is chosen so that the minimum is suitably influenced
by the solution of the partial differential equation (PDE). Specifically, given a solutionu(x)
of the PDE at a fixed time, a mapping from the physical domainÄp to the computational
domainÄc, which usually is taken to be the same asÄp,

ξ(x) : Äp→ Äc, (1.1)

is determined by minimizing a functional of the form

E(ξ) =
∫
Ä

1

w
|∇ξ |2 dx, (1.2)

wherew(x) is a weight function (or monitor function) depending on the physical solution
u(x) to be adapted. The monitor function should be chosen so that the function in the
computational domain given by

v(ξ) = u(x(ξ)) (1.3)

is better behaved. With (1.2), the coordinate transform (1.1) is determined from the Euler–
Lagrange equation

∇ ·
(

1

w
∇ξ
)
= 0. (1.4)

In one dimension, (1.4) is simplified to

xξw = C, (1.5)

which is the differential form of the equidistribution rule used in many one-dimensional
adaptive methods [9].

Understanding how the monitor function influences the resulting mesh properties is
crucial for the success of a mesh adaption method. In one dimension, such a relation is
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given by the equidistribution rule, but only in an average sense. In multiple dimensions, it is
even more difficult to predict the overall resulting mesh behavior from the monitor function
itself. In other words, it is difficult to have a precise control of the resulting grid distribution
from (1.4) or (1.5). Our numerical experiments using the above methods in various forms
have shown that adaptivity is achieved only when the solution is moderate. However, grid
points stop moving toward (or even turn away from) the singular region when singularity
is approached; i.e., adaptivity is lost when it is most needed. Part of the reason is because
the solution is so concentrated in a small region that it has little effect on the grids far
away from the singularity. An explicit reason for the failure is given in Section 3 for the
one-dimensional problem. In a particular application, such a problem may be fixed partially
by choosing a carefully designed monitor function when the structure of the singularity is
available. But a method that works in general is desirable. Such a method must be based on
a better grid redistribution procedure than those given above.

In Section 4, we introduce an iterative grid redistribution method. The fundamental idea
is that one realizes that a successive application of the mapping (the Winslow mapping)
obtained from (1.1)–(1.4) (or the generalization of them) improves the adaptivity of the
grids. In fact, our results indicate that the iteration converges to an optimal coordinate
mapping in the sense that the monitor function converges to a constant function almost
everywhere. With the iteration procedure, we gain control of the mesh distribution near the
singular point; i.e., we may achieve desirable grid adaption by controlling the number of
mesh iterations. In Section 5, we show how our iterative grid redistribution procedure can
be easily implemented in a static adaptive grid redistribution procedure for PDEs.

In Section 6, we show several numerical examples. We mainly apply our method to
the nonlinear Schr¨odinger equation [11, 12]. The dynamic rescaling method has been a
very successful method for solving the blowup solutions of the nonlinear Schr¨odinger
equation (NLS). Not only it can integrate the equation very close to blowup time, the
method also provides the blowup profile as well as the rate of blowup. However, the method
is restricted to the case in which the solution blows up at only a single point and it also
cannot resolve the solution outside the self-similarity region. In our numerical examples,
we will demonstrate the capability of our method for tracking multiple singularities. First,
we solve the nonlinear Schr¨odinger equation with a single blowup point and the results are
shown to match the results obtained by the dynamic rescaling method. More importantly,
in the second example we solve a solution that blows up at two points. To the best of our
knowledge, such calculations have never been done before, at least not with such high
resolutions. We also show a calculation in a supercritical case where the boundary of the
region of self-similarity can be determined by our method. This shows that not only our
method can resolve the singular regions, it also takes care of the the regions away from
the singularities. Finally, we will show a numerical solution for the Keller–Segal model
for bacterial pattern formation where multiple singularities arise from an initial uniform
bacterial density distribution.

Note that various improvements of Winslow’s method have been considered by many
authors [1, 3, 4, 10, 14, 17]. For example, Brackbill [4] incorporates an efficient directional
control as well as orthogonality of the mesh into the mesh adaption by adding to (1.2) more
functionals measuring those effects and thereby improves both accuracy and efficiency in
certain physical problems. Further improvement can also be obtained by introducing a “grid
inertia” term into the formulation (see [17]). It is expected that our iterative procedure can
also be applied in a similar way to problems where directional control and orthogonality of
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the mesh are important. We also note that, in this paper, we do not consider the effect of grid
smoothing which is important in many applications, especially when solution (singular)
structure is complex.

2. VARIOUS GRID GENERATION RULES

2.1. Grid Distribution Based on the Equidistribution Principle in One Dimension

The equidistribution principle was introduced by de Boor [7] for solving boundary value
problems for ordinary differential equations. It involves selecting mesh points such that some
measure of the solution error is equalized over each subinterval. Based on this principle,
many moving mesh methods have been developed.

Let x andξ denote the physical and computational coordinates, respectively, on the unit
interval [0, 1]. A one-to-one coordinate transformation between these domains is denoted
by {

x = x(ξ), ξ ∈ [0, 1]

x(0) = 0, x(1) = 1.
(2.1)

Suppose that a uniform mesh is given on the computational domain by

ξi = i

n
, i = 0, 1, . . . ,n,

where n is a certain positive integer, and denote the corresponding mesh inx by
{x0, x1, . . . , xn}. For a chosen monitor functionw(x) (>0), which provides some mea-
sure of the computational error in the solutionu(x) of the underlying physical PDE, the
(one-dimensional) equidistribution principle can be expressed in its integral form as∫ x

0
w(s) ds= ξC, (2.2)

where

C =
∫ 1

0
w(s) ds, (2.3)

or equivalently, in the discrete form,∫ xi+1

xi

w(x) dx =
∫ xi

xi−1

w(x) dx for i = 1, 2, . . . ,n− 1.

Differentiating (2.2) once, we obtain a differential form,

w(x(ξ))
∂

∂ξ
x(ξ) = C. (2.4)

Whenw(x)=√1+ u2
x, the above method is known as the “arclength method.”
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2.2. Grid Distribution Based on the Variational Principle

The above equidistribution principles cannot be generalized directly to two or higher
dimensions. In fact, equidistribution can be achieved locally in only a certain way [9].
In two (or higher) spatial dimensions, mesh adaption is commonly done using the varia-
tional approach, specifically by minimizing a functional of the coordinate mapping between
the physical domain and the computational domain. The functional is chosen so that the
minimum is suitably influenced by the desired properties of the solution of the PDE itself.

Again, letx andξ denote the physical and computational coordinates, respectively, on a
domainÄ ∈ Rd. A one-to-one coordinate transformation onÄ is denoted by

x = x(ξ), ξ ∈ Ä. (2.5)

The functionals used in existing variational approaches for mesh generation and adaptation
can usually be expressed in the form

E(ξ) =
∫
Ä

∑
i, j,α,β

gi, j ∂ξ
α

∂xi

∂ξβ

∂x j
dx, (2.6)

whereG= (gi, j ),G−1= (gi, j ) are symmetric positive definite matrices that are monitor
functions in a matrix form. The coordinate transformation and the mesh are determined
from the Euler–Lagrange equation,

∇ · (G−1∇ξ) = 0. (2.7)

Equations (2.6) and (2.7) are related to the theory of the harmonic map, where the Hamilton–
Schoen–Yau theorem guarantees the existence and uniqueness of the mapping with nonva-
nishing Jacobian.

We note that more terms can be added to the functional (2.6) to control other properties
of the mesh, such as orthogonality of the mesh and the alignment of the mesh lines with a
prescribed vector field [4].

2.3. Winslow’s Variable Diffusion Equation

A special case of (2.6) is Winslow’s variable diffusion method. Winslow [16] suggested
a functional of the form

E(ξ) =
∫
Ä

∑
j

1

w
|∇ξ j |2 dx, (2.8)

wherew>0 is a weight function depending on the physical solution to be adapted, and this
corresponds to (2.6) with the monitor function,

G = w I .

The Euler–Lagrange equations whose solution minimizesE are

∇ · 1

w
∇ξ j = 0, (2.9)

which are diffusion equations.
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The diffusion coefficientD= 1
w

can be directly related to the cell area or volume [1]. We
denote the Jacobian of the mapping as defined as

J∗ = ξxηy − ξyηx

for the two-dimensional case. Let̄D= ln D, J̄=−ln J∗. A straightforward calculation
gives

∇2
(
J̄ − D̄

)−∇ J̄ · ∇( J̄ − D̄
) = −R J∗−1,

where

R= 2

[
∇
(
∂ξ

∂x

)
· ∇
(
∂η

∂y

)
−∇

(
∂ξ

∂y

)
· ∇
(
∂η

∂x

)]
.

If we assume the term on the right side,R J∗−1, to be small, then we have

∇2( J̄ − D̄)−∇ J̄ · ∇( J̄ − D̄) = 0

and a solution may readily be written as

∇( J̄ − D̄) = 0

or

( J̄ − D̄) = constant (2.10)

and

DJ∗ = C,

whereC is a constant. This shows thatD is proportional to theJ∗−1. Therefore, equidistri-
bution is approximately satisfied in the regions whereR J∗−1 is small.

2.4. Solving the Generator Equation by Heat Flow

In our applications, the solutions of the elliptic system (2.9) are obtained as a steady state
of the heat flow equations [10],{

∂ξ

∂t −∇ ·
(

1
w
∇ξ) = 0

∂η

∂t −∇ ·
(

1
w
∇η) = 0.

(2.11)

That is, we solve the evolution Eq. (2.11) for long time until the solution becomes almost
steady. This steady state is used as the solution to (2.9). Note thatt in (2.11) should not
be confused with the time variablet used in the underline nonlinear PDE (5.1). For actual
computation, the dependent and independent variables in (2.11) are interchanged and we
have

xt = −xξ
J

{
∂

∂ξ

(
xT
η

1

Jw
xη

)
− ∂

∂η

(
xT
ξ

1

Jw
xη

)}
− xη

J

{
∂

∂ξ

(
xT
η

1

Jw
xξ

)
+ ∂

∂η

(
xT
ξ

1

Jw
xξ

)}
, (2.12)
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where the JacobianJ= xξ yη−xηyξ . The steady-state solution of (2.12) serves as the desired
solution of (2.9). We can start from a uniform mesh, i.e.,x(ξ, η,0)= ξ, y(ξ, η,0)= η, or
from an appropriate initial guess provided in the problem.

It is obvious that, to improve efficiency, more sophisticated elliptic solvers, such as the
multigrid method, can be used to solve the elliptic system. In our method, grid redistribution
were needed only once in a while. Computational cost for this part is not an issue (at least
in two dimensions).

3. PROPERTIES OF THE RESULTING GRID DISTRIBUTION

IN THE EXTREME CASE

From equidistribution property in one dimension and the properties of the solution of the
Winslow equations, we expect more grid points will be concentrated at the regions of rapid
variation of the solution. However, we will show that when the solution becomes singular,
such grid adaptivity is actually lost with the above methods.

3.1. Numerical Tests

We first consider a one-dimensional example. Let

u(x) = 1

ε
e−(

x−0.5
ε )

2

and the monitor function bew=√1+ u. We show the grid distribution for variousε in
Fig. 1. It is clear from the graph that as one decreasesε, the grid points move toward the
center first, but most of the points then move away from the center asε continues to decrease.

A two-dimensional example for function

u(x, y) = ce−c2(x2+y2)

FIG. 1. Grid behavior asε decreases.
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FIG. 2. Grid behavior foru= ce−c2(x2+y2) in 2-d asc increases.

shows similar grid behavior. Figure 2 shows the grid distributions obtained from (2.9) for
two different monitor functions

(a) w(x, y) =
√

1+ |u|2, (b) w(x, y) =
√

1+ |∇u|2.

In both cases, we see that, just like in one dimension, grid adaption is achieved for smaller
c and then lost whenc is large.

Other examples with various choices of monitor functions exhibit similar phenomena.
Such behavior seems to be generic when the monitor function becomes singular.
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3.2. Asymptotic Analysis

To understand the above phenomena, let’s assume that we have a monitor function that
is close to a self-similar singularity characterized by a parameterε,

wε(x) =
√

1+ 1

εk
g
(x

ε

)
,

whereg(y) is positive, has maximum atx= 0, and decays rapidly (say, faster than1
yn for a

large enoughn) asy→∞. We want to study the behavior of the grid asε→ 0. From (2.4),
we have

xξ = C(ε)

w
= C(ε)√

1+ 1
εk g
(

x
ε

) , (3.1)

where

C(ε) =
∫ 1

0

√
1+ 1

εk
g
(x

ε

)
dx.

Integration by parts, we have

C(ε) = x

√
1+ 1

εk
g
(x

ε

)∣∣∣∣1
0

−
∫ 1

0

x 1
εk g′(x)

2
√

1+ 1
εk g
(

x
ε

) dx

=
√

1+ 1

εk
g
(x

ε

)
− ε1− k

2

∫ 1
ε

0

yg′(y)

2
√
εk + g(y)

dy.

Sinceg(y) decays rapidly asy→∞, we have, asε→ 0,

C(ε) ∼ 1+ Aε1− k
2 , (3.2)

where

A = −
∫ ∞

0

yg′(y)
2
√

g(y)
dy=

∫ ∞
0

√
g(y) dy.

We thus have forx 6= 0 (i.e., away from the singularity) andε→ 0

xξ → 1 when k < 2

xξ → 1+ A when k = 2 (3.3)

xξ →∞ when k > 2.

This implies that, in the casek < 2, we have1X=1ξ away from the singularity. Therefore,
asε→ 0, only grid points very close to 0 are allowed to move; i.e., the grid adaption is very
limited near the place that functiong is large. This also shows that one has to know the
solution behavior in some detail in order to design the monitor function which can generate
the desired grid distribution near the singularity.
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4. AN ITERATIVE REMESHING PROCEDURE

To improve the mesh adaption, we introduce an iterative remeshing procedure. Let us
first define the Winslow mapping:

T: (x, u(x))→ (ξ, v(ξ)).

Herex= x(ξ) is determined from (2.9), where the monitor functionw(x) depends onu(x);
v(ξ)= u(x(ξ )).

If the monitor functionw is chosen properly, the resulting mesh should concentrate more
grid points in the regions with large variations. This also means thatv(ξ ) should be better
behaved than the original functionu(x) in the sense that the variation of the monitor function
in the new variables is reduced. However, the examples in the previous section show that
in some cases, such improvement is very limited. A natural idea to improve further is to
repeat the same procedure forv(ξ ). In fact, this process can be repeated until a satisfactory
v(ξ ) is achieved. Based on this intuition, an iterative remeshing procedure is introduced by
applying the Winslow mappingT iteratively:

• Let uk(x) be the function afterk iterations.
• Determine the mappingxk+1(ξ ) from uk(x) according to (1.4) or (1.5), where monitor

functionwk is defined usinguk(x).
• Defineuk+1(ξ) := uk(xk+1(ξ)).

The results of the iteration is to flatten out the monitor function gradually. In fact, ifuk(x)
andxk(ξ ) converge, then we must havexk→ x∗(ξ)= ξ anduk→ u∗(x).

Claim. wk converges to a constant function almost everywhere.
This shows that we achieve the maximum adaption for the monitor function. The above

claim is verified by many of our numerical examples below, although so far, rigorous proof
can only be obtained in some special cases.

EXAMPLE 1. Let u(x)= exp(−20(x − 0.5)2) on [0, 1]. We apply the above iteration
using three different monitor functions:

(a) w =
√

1+ u2
x, (b) w =

√
1+ u2, (c) w =

√
1+ 0.1u2

x + u2.

In Fig. 3, we showuk(x) for differentk. Figure 3a shows thatuk(x) converges to two straight
lines, i.e.,|uk

x(x)| converges to constants a.e. Figure 3b shows that|uk(x)| converges to 1.
Figure 3c shows that a combination of (a) and (b) gives a limiting function with much better
behavior. In all cases, we havew→ Constant a.e. ask→∞.

EXAMPLE 2. Letu(x, y)= e(−5(x2+y2)). We use three different monitor functions:

(a) w =
√

1+ |∇u|2, (b) w =
√

1+ u2, (c) w =
√

1+ |∇u|2+ u2.

Again, in case (a), we see thatuk converges to a cone so that|∇u|2 converges to a constant.
In case (b),|uk| converges to 1. In case (c), the limiting function has much better behavior.
In all cases, we again havew → Constant a.e. ask→∞. Only pictures for case (a) are
shown in Fig. 4.
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FIG. 3. Iterative remeshing for three different monitor functions. Circles representu(x) in physical variable.
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FIG. 4. Iterative remeshing in two dimensions with monitor functionw=
√

1+ |∇u|2.

The above examples also suggest that to achieve better limiting behavior in the compu-
tational domain, the monitor function should include both|u| and|∇u|. Theoretically, the
more higher order derivatives are added (although difficult to implement in practice), the
better limiting behavior of the function in the computational domain is expected. To see
this, let the monitor function bew=

√
1+ |u| + |Du| + |D2u|. Since in the iteration limit,

the monitor functionw tends to a constant, which is the integral average ofw, we have that,
in the computational variables, max|Du|, max|D2u| are all bounded by the same constant.

EXAMPLE 3. Next, we show the capability of improving the mesh adaption by the
iterative remeshing in Fig. 5. Again for functionu(x, y)= ce−c2(x2+y2) with c= 50, we see

FIG. 5. Improved mesh distribution (compare to Fig. 2) foru= ce−c2(x2+y2)(c= 50) after several iterations.
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FIG. 6. Iterative remeshing foru= exp(−8(4x2+ 9y2− 1)2) (top) andu= exp(−100(y− x2+ 0.5)2) (bot-
tom). In both cases, we choosew= 1+ u.

significant improvement (compared to Fig. 2) in mesh concentration at the origin as the
number of iterations increases.

EXAMPLE 4. Figure 6 shows the effect of the iterative remeshing for functionu=
exp(−8(4x2+9y2−1)2) andu= exp(−100(y− x2+0.5)2), respectively. The maximum
points of the above two functions are on the curves. This example shows the capability of
our method for handling possible line singularities.

5. ADAPTIVE PROCEDURE FOR SOLVING PDE S

In this section, we design a numerical scheme that incorporates the iterative remeshing
into a static adaptive method for solutions of PDEs. For simplicity, we will only formulate
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the scheme in two dimensions. Generalization to three dimensions is straightforward. Our
scheme is static; i.e., we use a fixed grid to solve the PDE in the computational variables
until a certain criterion is violated that indicates that the adaption is needed. Then iterative
remeshing is used to generate a new grid.

Let’s assume that we solve a PDE or system of PDEs of the form

ut = F(x, u, Du, D2u), x ∈ Äp, (5.1)

supplemented with initial and boundary conditions.D is the first-order differential operator.
The one level grid generation is based on (2.9),{∇ · ( 1

w
∇ξ) = 0

∇ · ( 1
w
∇η) = 0,

(5.2)

which determines the transformation(x(ξ, η), y(ξ, η)) from the computational domainÄc

to the physical domainÄp. The choice of the monitor functionw is problem dependent. In
most cases,w=

√
1+ α|∇ Eu|2+ β|Eu|2 is good enough for certain constantsα > 0, β > 0.

The procedure is described in the following:

(0) Given an initial conditionEu(x, y, 0), the initial grid transformsx(ξ, η), y(ξ, η) are
determined from the iterative remeshing, which in turn gives an initial condition in the
computational domainEu(x(ξ, η), y(ξ, η),0).

(1) Solve the PDE in the computational variablesξ, η with the grid transformation
x(ξ, η), y(ξ, η) being fixed, until some timet∗ when the solutionEu(ξ, η, t∗) cannot meet a
certain criterion.

(2) Generate a new mesh by the iterative remeshing, starting withEu(ξ, η, t∗). The remesh-
ing iteration stops if the criterion in (1) is satisfied. The interpolation is used to move the
solution on the new grids.

(3) Go to (1) to continue the integration.

Remark 1. The stopping criterion in step (1) depends on the specific problem. In our
numerical examples below, the criterion is set so that the maximum amplitude of the gradient
is smaller than a given value TOL. The choice of TOL is flexible. However, it has to be
larger than the integral average of the gradient of the solution over the domain. It is easy
to see that a smaller TOL requires more remeshing iterations. In actual applications, one
should include quantities of interests near the singularity in both the monitor function and
the stopping criterion. For example, in the fluid problem, vorticity might be the desired
quantity to be included in the monitor function.

Remark 2. In most of the cases, only one remeshing iteration is needed when we start
the iteration withEu(ξ, η, t∗) in Step 2. Since we always start the iteration from the most
recent solution in the computational domain, when the cycle (1)–(3) is repeatedk times,
effectively we have at leastk remeshing iterations att∗ from the solution in the original
physical variables.

Remark 3. Our grid movement method is static; i.e., the grids are held stationary during
the evolution of PDEs until the stopping criterion is violated and are shifted to their new po-
sitions by our iterative procedure. The solution values are moved from the old grid to the new
grid by interpolation. The interpolation is carried out on the uniform mesh and using cubic
polynomial interpolations. As pointed out in Remark 2, our iterative procedure was carried
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out gradually as the solution evolves toward the singularity and solution behavior in the com-
putational domain is always controlled by the stopping criterion (e.g., max|∇u| ≤ TOL).
Therefore interpolation errors are also controlled.

6. NUMERICAL EXAMPLES

We first solve the nonlinear Schr¨odinger equation (NLS),{
iψt +1ψ + |ψ |2σψ = 0, (x, y) ∈ Äp, t > 0,

ψ(x, y, t)|∂Äp = 0,
(6.1)

in two dimensions. The singular solutions with one blowup point were successfully com-
puted using the dynamic rescaling method first developed in [12] for the radially symmetric
case and generalized in two and three dimensions in [11]. We shall first reproduce the result
for the single blowup point. Then we will present an example with multiple blowup points
as well as an example in the supercritical case.

Let (x(ξ, η), y(ξ, η)) be the spatial coordinate transformations. BothÄp (the physical
domain) andÄc (the computational domain) are chosen to be [−1, 1]× [−1, 1]. As in the
dynamic rescaling, we also rescale the time fromt to τ as

dτ

dt
= 1

λ2(t)
. (6.2)

Let

ψ = 1

L(t)
φ,

whereL(t) is a scaling factor chosen to be

L(t) = 1

max(x,y)∈Äp |ψ(x, y, t)| . (6.3)

To balance the coefficients in the transformed equation, we chooseλ= Lσ . In the coordinate
system(ξ, η, τ ), the NLS becomes

φτ − Lτ
L
φ − i

(
λ21Bφ + |φ|2φ

) = 0, (6.4)

together with

Lτ = L2σ+1 Im(φ∗1Bφ)|(ξ0,η0), (6.5)

where(ξ0(t), η0(t)) is the maximum point of|φ(ξ, η, t)|, and

1Bφ = 1

J

{
∂

∂ξ

(
b22φξ − b12φη

J

)
+ ∂

∂η

(
b11φη − b12φξ

J

)}
,

b11 = x2
ξ + y2

ξ , b12 = xξ xη + yξ yη, b22 = x2
η + y2

η .

J is the Jacobian of the coordinate transformation.
In the grid redistribution, the monitor function is taken to bew(ξ, η)= (1+2|φ(ξ, η)|2+
|∇φ(ξ, η)|2) . The criterion is set so that the maximum amplitude of the gradient is smaller
than a given value of TOL. Two values of TOL, 5 and 7, are used for our computations.
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FIG. 7. φ(ξ, η, τ ) inÄc (computational domain) atτ = 95.82(t = 0.024317104), 1/λ= 2.9514e+ 05 (NLS
with initial value (i)).

1. In the first example, we solve the NLS in the critical case (σ = 1) with the initial
condition

i. ψ(x, y, 0) = 10e−4x2−9y2
.

Equations (6.4) and (6.5) are solved simultaneously onÄc with 100× 100 grid points
and TOL= 5. About 20 remeshing steps are conducted before the computation reaches
τ = 95.82 (ort = 0.024317104) when the maximum value of the solution is 2.9514× 105.
Figures 7 and 8 show solutions in the computational and the physical variables, respectively,
at τ = 95.82. The mesh distribution is shown in Figs. 9 and 10, where one can see that the
minimum mesh size is about 10−6. A cross section of the solution in both the computational

FIG. 8. ψ(x, y, t) in Äp (physical domain) att = 0.024317104 corresponding to Fig. 7 (NLS with initial
value (i)).
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FIG. 9. Mesh inÄp at t = 0.024317104(τ = 95.82) corresponding to Fig. 8 (NLS with initial value (i)).

and the physical variables are shown in Figs. 11 and 12. The computation is well resolved
with more than 40 grid points within the interval of size 10−5.

To verify the stable property of the isotropic singularity, a result first shown numerically
by the dynamic rescaling method [11], we define two scaling factors in thex andy directions:

L1 =
√√√√∫Äp

|ψx|2 dx dy∫
Äp
|ψ |2 dx dy

L2 =
√√√√∫Äp

|ψy|2 dx dy∫
Äp
|ψ |2 dx dy

FIG. 10. An enlarged picture of the above mesh around the center (NLS with initial value (i)).
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FIG. 11. A cross section of Fig. 7 atη= 0 (NLS with initial value (i)).

Figure 13 shows the ratio ofL1
L2

as a function ofτ and the limit converges to 1 which

shows that the solution converges to an isotropic singularity. Figure 14 showsλτ
λ
(=σ Lτ

L ) as
a function ofτ , which approaches 0 slowly, which leads to the blowup rate.

All the results above are consistent with the results obtained from the dynamic rescaling
method. To check the convergence, we run our code with 100× 100 and 160× 160 grid
points, respectively, and the results are compared in Fig. 15. The solution profiles are in
excellent agreement. To show that our numerical results are insensitive to the remeshing
criterion (i.e., the value of TOL), we also run the code with TOL= 7. The result is also in
good agreement with the result obtained with TOL= 5 (Fig. 16). Our computations were
performed on a single node SGI O2000 machine. The total CPU time for this run is 5590 s,

FIG. 12. A cross section of Fig. 8 aty= 0 (NLS with initial value (i)).
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FIG. 13. Ratio L1
L2

as a function ofτ (NLS with initial value (i)).

in which 1650 s are used in the remeshing (Step 2). If one uses a uniform grid with a
resolution of grid size 10−6 and an explicit scheme in time, to reach the same maximum
value, the estimated CPU time would be 1.2665× 104 h!

2. In the second example, we use the initial condition
ii. ψ(x, y, 0)= 20(e−20((x+0.5)2+y2) + e−20((x−0.5)2+y2)),

with two maximum points. Again, we takeσ = 1. Our results show that the solution blows
up at two points. Such a calculation cannot be done by the dynamic rescaling method be-
cause one can rescale only around one point. We have not seen other successful calculations
on such problems. We solve the equation with 160× 160 grid points in the computational
domain and TOL= 7. Figures 17 and 18 show solutions in computational and physical
variables, respectively, atτ = 76.40 (t = 0.005651) when the maximum of the solution

FIG. 14. a(τ )= λτ
λ

as a function ofτ (NLS with initial value (i)).
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FIG. 15. A cross section of|ψ(x, y, t)| at y= 0, τ = 95.82. 100× 100(160× 160) grid points are used for∗
(—), and the maximum value at this time is 2.9514e+ 05(2.7568e+ 05). TOL= 5 (NLS with initial value (i)).

reaches 1.488× 105. The grid distribution at the same time is shown in Figs. 19 and 20. The
blowup structure of each singularity is the same as that of the solution with single blowup
point.

3. In the third example, we solve the NLS in the supercritical case (σ = 2) with initial
condition

iii. ψ(x, y, 0)= 10e−9x2−9y2
.

The dynamics is much faster in the rescaled time variableτ than in the critical case. We plot
the solution atτ = 34.3 in both computational variables and physical variables in Figs. 21
and 22. A distinct property of the supercritical collapse is that there seems to be a finite

FIG. 16. A cross section of|ψ(x, y, t)| at y= 0, τ = 95.82. TOL= 7(TOL= 5) is used for∗ (—), and the
maximum value at this time is 2.9279e+ 05(2.7568e+ 05). 160× 160 (NLS with initial value (i)).
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FIG. 17. φ(ξ, η, τ ) in Äc at τ = 76.40(t = 0.005651), 1/λ= 1.4880e+ 05 (NLS with initial value (ii)).

region of self-similarity which is time independent. In a paper of Shvetset al. [15], this
behavior was shown by an asymptotic analysis and supported by numerical experiments
based on an improved dynamic rescaling method in the radially symmetric case. Here we
show that our method also captures the phenomenon. In Fig. 23 we show a cross section of
the solution in the computational variable and an enlarged picture (Fig. 24) clearly shows
the transition from the algebraic decay of the self-similar profile to the exponential decay
of the tail. In Fig. 25, we show|ψ | · |x| 1σ against log(|x|) at several time stepsτ near the
blowup time. It shows a transition region (or boundary of self-similarity) near log(|x|)=−6
or |x| =0.025 which seems to be independent of time.

FIG. 18. ψ(x, y, t) in Äp at t = 0.005651 corresponding to Fig. 17 (NLS with initial value (ii)).
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FIG. 19. Mesh inÄp at t = 0.005651(τ = 76.40) corresponding to Fig. 18 (NLS with initial value (ii)).

4. Our next example is the Keller–Segal (KS) model for bacterial pattern formation:

{
ρt = ε1ρ −∇ · (ρ∇c), (x, y) ∈ Äp, t > 0,

ct = 1c+ ρ. (6.6)

Hereρ is the bacterial density andc is the attractant field. In some cases, the concentration
of the attractantc draws the bacteria together and they achieve an infinite density at some
finite time [5, 6].

FIG. 20. Enlarged view of the above mesh inÄp around one blowup point att = 0.005651(τ = 76.40)
corresponding to Fig. 18 (NLS with initial value (ii)).



FIG. 21. Solution inÄc at τ = 34.3 (NLS withσ = 2 and initial value (iii)).

FIG. 22. Solution inÄp at τ = 34.3 (NLS withσ = 2 and initial value (iii)).

FIG. 23. A cross section of Fig. 21 atη= 0 (NLS withσ = 2 and initial value (iii)).
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FIG. 24. An enlarged view of Fig. 23 near the boundary.

FIG. 25. |ψ | · √|x| are plotted against log(|x|) for several time steps closed to blowup time.

FIG. 26. ρ in Äc at t = 2.7775 (KS).
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FIG. 27. c in Äc at t = 2.7775 (KS).

FIG. 28. ρ in Äp at t = 2.7775 corresponding to Fig. 26 (KS).

FIG. 29. c in Äp at t = 2.7775 corresponding to Fig. 27 (KS).
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FIG. 30. Mesh inÄp at t = 2.7775 corresponding to Figs. 28 and 29 (KS).

We start with a uniform density distribution and a perturbation in the attractant field on
a periodic domain [0, 1]× [0, 1]:{

ρ(x, y, 0) = 1,

c(x, y, 0) = sin 2πx sin 2πy.
(6.7)

Theε is taken to be 0.01. On the computational domain, the PDEs have the form of{
ρt = ε1Bρ − ρ1Bc−∇′ρ · ∇′c,
ct = 1Bc+ ρ, (6.8)

FIG. 31. Mesh inÄp around one blowup point att = 2.7775 corresponding to Figs. 28 and 29 (KS).
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FIG. 32. Max(x,y)∈Äp ρ(x, y, t) versust (KS).

where

∇′ = 1

J

(
yη −yξ

−xη xξ

)(
∂
∂ξ

∂
∂η

)
.

Equation (6.8) is solved on a uniform mesh inÄc with 100× 100 grid points. The TOL
is chosen to be 10. The monitor function isw(ξ, η)= (1 + 2|ρ(ξ, η)|2 + |∇ρ(ξ, η)|2).
The computation is continued untilt = 2.7775 when the maximum density reaches about
105. About 10 remeshing iterations are conducted prior to that time. The densityρ and the
attractantc are shown in the computation domain in Figs. 26 and 27 and in the physical
domain in Figs. 28 and 29. Mesh distributions at the samet are shown in Figs. 30 and 31.
The maximum of the density as a function oft is shown in Fig. 32. Again we see a multiple
blowup solution captured by our adaptive method.

7. CONCLUSIONS

We have introduced an iterative grid redistribution method for computing singularities
in multiple dimensions. The major improvement of our method over the conventional grid
redistribution method is that we gain control of the mesh distribution around the singularity,
which the usual mesh generation procedure based on equidistribution or variational approach
is unable to achieve. Our method is also rather general: it is capable of handling multiple
singularities and requires little information in advance about the locations and structure
of the singularities. Moreover, it is relatively easy to implement compared to many grid
refinement methods. Although our examples in this paper are in two dimensions, it is
straightforward to generalize the method to the three dimensions. Many three-dimensional
problems exhibit richer behavior in singularities such as line singularities and transitions
from line singularities to point singularities. Our method would be more desirable in such
cases. Research on the three-dimensional problems is currently being conducted.
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